The Agentic Trap: Why 40% of AI Automation Projects Lose Momentum

Gartner’s latest forecast is striking: more than 40% of agentic AI projects will be canceled by 2027. At first glance, this looks like a technology growing faster than it can mature. But a closer look across the industry shows a different pattern. Many initiatives stall for the same reason micromanaged teams do. The work is described at the level of steps rather than outcomes. When expectations aren’t clear, people wait for instructions. When expectations aren’t clear for agents, they either improvise poorly or fail to act. 

This is the same shift I described in my previous article, “Software’s Biggest Breakthrough Was Making It Cheap Enough to Waste.” When software becomes inexpensive enough to test freely, the organizations that pull ahead are the ones that work toward clear outcomes and validate their decisions quickly. 

Agentic AI is the next stage of that evolution. Autonomy becomes meaningful only when the organization already understands the outcome it’s trying to achieve, how good decisions support that outcome, and when judgment should shift back to a human. 

The Shift to Outcome-Oriented Programming 

Agentic AI brings a model that feels intuitive but represents a quiet transformation. Traditional automation has always been procedural in that teams document the steps, configure the workflow, and optimize the sequence. Like a highly scripted form of people management, this model is effective when the work is predictable, but limited when decisions are open-ended or require problem solving. 

Agentic systems operate more like empowered teams. They begin with a desired outcome and use planning, reasoning, and available tools to move toward it. As system designers, our role shifts from specifying every step to defining the outcome, the boundaries, and the signals that guide good judgment. 

Instead of detailing each action, teams clarify: 

This shift places new demands on organizational clarity. To support outcome-oriented systems, teams need a shared understanding of how decisions are made. They need to determine what good judgment looks like, what tradeoffs are acceptable, and how to recognize situations that require human involvement. 

Industry research points to the same conclusion. Harvard Business Review notes that teams struggle when they choose agentic use cases without first defining how those decisions should be evaluated. XMPRO shows that many failures stem from treating agentic systems as extensions of existing automation rather than as tools that require a different architectural foundation. RAND’s analysis adds that projects built on assumptions instead of validated decision patterns rarely make it into stable production. 

Together, these findings underscore a simple theme. Agents thrive when the organization already understands how good decisions are made. 

Decision Intelligence Shapes Agentic Performance  

Agentic systems perform well when the outcome is clear, the signals are reliable, and proper judgment is well understood. When goals or success criteria are fuzzy, or tasks overly complex, performance mirrors that ambiguity. 

In a Carnegie Mellon evaluation, advanced models completed merely one-third of multi-step tasks without intervention. Meanwhile, First Page Sage’s 2025 survey showed much higher completion rates in more structured domains, with performance dropping as tasks became more ambiguous or context heavy. 

This reflects another truth about autonomy. Some problems are simply too broad or too abstract for an agent to manage directly. In such cases, the outcome must be broken into sub-outcomes, and those into smaller decisions, until the individual pieces fall within the system’s ability to reason effectively. 

In many ways, this mirrors effective leadership. Good leaders don’t hand individual team members a giant, unstructured mandate. They cascade outcomes into stratified responsibilities that people can act on. Agentic systems operate the same way. They thrive when the goal has been decomposed into solvable parts with well-defined judgment and guardrails. 

This is why organizational clarity becomes a core predictor of success. 

How Teams Fall Into the Agentic Trap 

Many organizations feel the pull of agentic AI because it promises systems that plan, act, and adapt without waiting for human intervention. But the projects that stall often fall into a predictable trap. 

Teams begin by automating process instead of automating the judgment behind the decisions the agent is expected to make. Teams define what a system should do instead of defining how to evaluate the output or what “good” should look like. Vague quality metrics, progress signals, and escalation criteria lead to technically valid, strategically mediocre decisions that erode confidence in the system. 

The research behind this pattern is remarkably consistent. HBR notes that teams often choose agentic use cases before they understand the criteria needed to evaluate them. XMPRO describes the architectural breakdowns that occur when agentic systems are treated like upgrades to procedural automation. RAND’s analysis shows that assumption-driven decision-making is one of the strongest predictors of AI project failure, while projects built on clear evaluation criteria and validated decision patterns are far more likely to reach stable production. 

This is the agentic trap: trying to automate judgment without first understanding how good judgment is made. Agentic AI is more than automation of steps, it’s the automation of evaluation, prioritization, and tradeoff decisions. Without clear outcomes, criteria, signals, and boundaries to inform decision-making, the system has nothing stable to scale, and its behavior reflects that uncertainty. 

A Practical Way Forward: The Automation Readiness Assessment 
Decisions that succeed under autonomy share five characteristics. When one or more are missing, agents need more support: 

Have all five? Build with confidence. 
Only three or four? Pilot with human review in order to build up a live data set. 
Only one or two? Go strengthen your decision clarity before automating. 

This approach keeps teams grounded. It turns autonomy from an aspirational leap into a disciplined extension of what already works. 

The Path to Agentic Maturity 

Agentic AI expands an organization’s capacity for coordinated action, but only when the decisions behind the work are already well understood. The projects that avoid the 40% failure curve do so because they encode judgement into agents, not just process. They clarify the outcome, validate the decision pattern, define the boundaries, and then let the system scale what works. 

Clarity of judgment produces resilience, resilience enables autonomy, and autonomy creates leverage. The path to agentic maturity begins with well-defined decisions. Everything else grows from there. 

The pace of AI change can feel relentless with tools, processes, and practices evolving almost weekly. We help organizations navigate this landscape with clarity, balancing experimentation with governance, and turning AI’s potential into practical, measurable outcomes. If you’re looking to explore how AI can work inside your organization—not just in theory, but in practice—we’d love to be a partner in that journey. Request an AI briefing. 


Key Takeaways 


FAQs 

What is the “agentic trap”? 
The agentic trap describes what happens when organizations rush to deploy agents that plan and act, before they have defined the outcomes, decision criteria, and guardrails those agents require. The technology looks powerful, yet projects stall because the underlying decisions were never made explicit. 

How is agentic AI different from traditional automation? 
Traditional automation follows a procedural model. Teams document a sequence of steps and the system executes those steps in predictable conditions. Agentic AI starts from an outcome, uses planning and reasoning to choose actions, and navigates toward that outcome using tools, data, and judgment signals. The organization moves from “here are the steps” to “here is the result, the boundaries, and the signals that matter.” 

Why do so many agentic AI projects lose momentum? 
Momentum fades when teams try to automate decisions that have not been documented, validated, or measured. Costs rise, risk concerns surface, and it becomes harder to show progress against business outcomes. Research from Gartner, Harvard Business Review, XMPRO, and RAND all point to the same pattern: projects thrive when the decision environment is explicit and validated, and they struggle when it is based on assumptions. 

What makes a decision “ready” for autonomy? 
Decisions are ready for agentic automation when they meet five criteria: 

The more of these elements are present, the more confidently teams can extend autonomy. 

How can we use the Automation Readiness Assessment in practice? 
Use the five criteria as a simple scoring lens for each candidate decision: 

This keeps investment aligned with decision maturity and creates a clear path from experimentation to durable production. 

Where should leaders focus first to reach agentic maturity? 
Leaders gain the most leverage by focusing on judgment clarity within critical workflows. That means aligning on desired outcomes, success metrics, escalation thresholds, and the signals that inform good decisions. With that foundation, agentic AI becomes a force multiplier for well-understood work rather than a risky experiment in ambiguous territory.